metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.44D6, C6.272+ 1+4, C3⋊D4⋊5D4, (C2×D4)⋊19D6, C22⋊C4⋊6D6, C22≀C2⋊5S3, C23⋊2D6⋊5C2, C3⋊4(D4⋊5D4), D6.16(C2×D4), (C6×D4)⋊8C22, D6⋊3D4⋊13C2, D6⋊C4⋊12C22, (D4×Dic3)⋊12C2, C6.57(C22×D4), C22.11(S3×D4), C23.14D6⋊3C2, Dic3⋊4D4⋊3C2, C23.9D6⋊13C2, (C2×C6).135C24, (C2×C12).29C23, C4⋊Dic3⋊26C22, Dic3.19(C2×D4), (C22×C6).9C23, C2.29(D4⋊6D6), C22⋊5(D4⋊2S3), Dic3⋊C4⋊10C22, (C4×Dic3)⋊15C22, (C2×Dic6)⋊20C22, C23.17(C22×S3), (C23×C6).68C22, C23.11D6⋊12C2, Dic3.D4⋊13C2, C6.D4⋊50C22, C23.21D6⋊10C2, (C22×S3).54C23, (S3×C23).43C22, C22.156(S3×C23), (C2×Dic3).222C23, (C22×Dic3)⋊14C22, C2.30(C2×S3×D4), (S3×C2×C4)⋊8C22, (S3×C22⋊C4)⋊3C2, C6.77(C2×C4○D4), (C2×C6).54(C2×D4), (C3×C22≀C2)⋊6C2, (C2×D4⋊2S3)⋊6C2, (C2×C6)⋊10(C4○D4), (C22×C3⋊D4)⋊9C2, (C2×C3⋊D4)⋊8C22, C2.28(C2×D4⋊2S3), (C3×C22⋊C4)⋊6C22, (C2×C4).29(C22×S3), (C2×C6.D4)⋊20C2, SmallGroup(192,1150)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.44D6
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=f2=d, ab=ba, eae-1=faf-1=ac=ca, ad=da, fbf-1=bc=cb, ebe-1=bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e5 >
Subgroups: 928 in 334 conjugacy classes, 107 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C24, Dic6, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C22×C6, C2×C22⋊C4, C4×D4, C22≀C2, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C22×D4, C2×C4○D4, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C3×C22⋊C4, C2×Dic6, S3×C2×C4, D4⋊2S3, C22×Dic3, C2×C3⋊D4, C2×C3⋊D4, C6×D4, S3×C23, C23×C6, D4⋊5D4, Dic3.D4, S3×C22⋊C4, Dic3⋊4D4, C23.9D6, C23.11D6, C23.21D6, D4×Dic3, C23⋊2D6, D6⋊3D4, C23.14D6, C2×C6.D4, C3×C22≀C2, C2×D4⋊2S3, C22×C3⋊D4, C24.44D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C22×S3, C22×D4, C2×C4○D4, 2+ 1+4, S3×D4, D4⋊2S3, S3×C23, D4⋊5D4, C2×S3×D4, C2×D4⋊2S3, D4⋊6D6, C24.44D6
(1 7)(2 38)(3 9)(4 40)(5 11)(6 42)(8 44)(10 46)(12 48)(13 19)(14 27)(15 21)(16 29)(17 23)(18 31)(20 33)(22 35)(24 25)(26 32)(28 34)(30 36)(37 43)(39 45)(41 47)
(1 17)(2 24)(3 19)(4 14)(5 21)(6 16)(7 23)(8 18)(9 13)(10 20)(11 15)(12 22)(25 38)(26 45)(27 40)(28 47)(29 42)(30 37)(31 44)(32 39)(33 46)(34 41)(35 48)(36 43)
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 32)(14 33)(15 34)(16 35)(17 36)(18 25)(19 26)(20 27)(21 28)(22 29)(23 30)(24 31)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 12 7 6)(2 5 8 11)(3 10 9 4)(13 33 19 27)(14 26 20 32)(15 31 21 25)(16 36 22 30)(17 29 23 35)(18 34 24 28)(37 48 43 42)(38 41 44 47)(39 46 45 40)
G:=sub<Sym(48)| (1,7)(2,38)(3,9)(4,40)(5,11)(6,42)(8,44)(10,46)(12,48)(13,19)(14,27)(15,21)(16,29)(17,23)(18,31)(20,33)(22,35)(24,25)(26,32)(28,34)(30,36)(37,43)(39,45)(41,47), (1,17)(2,24)(3,19)(4,14)(5,21)(6,16)(7,23)(8,18)(9,13)(10,20)(11,15)(12,22)(25,38)(26,45)(27,40)(28,47)(29,42)(30,37)(31,44)(32,39)(33,46)(34,41)(35,48)(36,43), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,32)(14,33)(15,34)(16,35)(17,36)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12,7,6)(2,5,8,11)(3,10,9,4)(13,33,19,27)(14,26,20,32)(15,31,21,25)(16,36,22,30)(17,29,23,35)(18,34,24,28)(37,48,43,42)(38,41,44,47)(39,46,45,40)>;
G:=Group( (1,7)(2,38)(3,9)(4,40)(5,11)(6,42)(8,44)(10,46)(12,48)(13,19)(14,27)(15,21)(16,29)(17,23)(18,31)(20,33)(22,35)(24,25)(26,32)(28,34)(30,36)(37,43)(39,45)(41,47), (1,17)(2,24)(3,19)(4,14)(5,21)(6,16)(7,23)(8,18)(9,13)(10,20)(11,15)(12,22)(25,38)(26,45)(27,40)(28,47)(29,42)(30,37)(31,44)(32,39)(33,46)(34,41)(35,48)(36,43), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,32)(14,33)(15,34)(16,35)(17,36)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12,7,6)(2,5,8,11)(3,10,9,4)(13,33,19,27)(14,26,20,32)(15,31,21,25)(16,36,22,30)(17,29,23,35)(18,34,24,28)(37,48,43,42)(38,41,44,47)(39,46,45,40) );
G=PermutationGroup([[(1,7),(2,38),(3,9),(4,40),(5,11),(6,42),(8,44),(10,46),(12,48),(13,19),(14,27),(15,21),(16,29),(17,23),(18,31),(20,33),(22,35),(24,25),(26,32),(28,34),(30,36),(37,43),(39,45),(41,47)], [(1,17),(2,24),(3,19),(4,14),(5,21),(6,16),(7,23),(8,18),(9,13),(10,20),(11,15),(12,22),(25,38),(26,45),(27,40),(28,47),(29,42),(30,37),(31,44),(32,39),(33,46),(34,41),(35,48),(36,43)], [(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,32),(14,33),(15,34),(16,35),(17,36),(18,25),(19,26),(20,27),(21,28),(22,29),(23,30),(24,31)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,12,7,6),(2,5,8,11),(3,10,9,4),(13,33,19,27),(14,26,20,32),(15,31,21,25),(16,36,22,30),(17,29,23,35),(18,34,24,28),(37,48,43,42),(38,41,44,47),(39,46,45,40)]])
39 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 3 | 4A | 4B | 4C | 4D | ··· | 4I | 4J | 4K | 4L | 6A | 6B | 6C | 6D | ··· | 6I | 6J | 12A | 12B | 12C |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | 6 | 12 | 2 | 4 | 4 | 4 | 6 | ··· | 6 | 12 | 12 | 12 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | C4○D4 | 2+ 1+4 | S3×D4 | D4⋊2S3 | D4⋊6D6 |
kernel | C24.44D6 | Dic3.D4 | S3×C22⋊C4 | Dic3⋊4D4 | C23.9D6 | C23.11D6 | C23.21D6 | D4×Dic3 | C23⋊2D6 | D6⋊3D4 | C23.14D6 | C2×C6.D4 | C3×C22≀C2 | C2×D4⋊2S3 | C22×C3⋊D4 | C22≀C2 | C3⋊D4 | C22⋊C4 | C2×D4 | C24 | C2×C6 | C6 | C22 | C22 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 4 | 3 | 3 | 1 | 4 | 1 | 2 | 2 | 2 |
Matrix representation of C24.44D6 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 2 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 8 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,8,8,0,0,0,0,0,5,0,0,0,0,0,0,0,12,0,0,0,0,1,1],[0,1,0,0,0,0,12,0,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,0,0,1,1] >;
C24.44D6 in GAP, Magma, Sage, TeX
C_2^4._{44}D_6
% in TeX
G:=Group("C2^4.44D6");
// GroupNames label
G:=SmallGroup(192,1150);
// by ID
G=gap.SmallGroup(192,1150);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,184,1571,297,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=f^2=d,a*b=b*a,e*a*e^-1=f*a*f^-1=a*c=c*a,a*d=d*a,f*b*f^-1=b*c=c*b,e*b*e^-1=b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^5>;
// generators/relations